The stigma varies in being more or less, though slightly, lobed. The anthers also vary much in length in both forms, but in a greater degree in the long-styled than in the short-styled-form; many in the former being from 80 to 63, and in the latter from 80 to 70 divisions of the micrometer in length. From an average of seven measurements, the short-styled anthers were to those from the long-styled as 100 to 91 in length. Lastly, the pollen-grains from the long-styled flowers varied between 13 and 11.5 divisions of the micrometer, and those from the short-styled between 15 and 13. The average diameter of 25 grains from the latter, or short-styled form, was to that of 20 grains from the long-styled as 100 to 91. We see, therefore, that the pollen-grains from the smaller anthers of the shorter stamens in the long-styled form are, as usual, of smaller size than those in the other form. But what is remarkable, a larger proportion of the grains were small, shrivelled, and worthless. This could be seen by merely comparing the contents of the anthers from several distinct plants of each form. But in one instance my son found, by counting, that out of 193 grains from a long-styled flower, 53 were bad, or 27 per cent; whilst out of 265 grains from a short-styled flower only 18 were bad, or 7 per cent. From the condition of the pollen in the long-styled form, and from the extreme variability of all the organs in both forms, we may perhaps suspect that the plant is undergoing a change, and tending to become dioecious.

My son collected in the Isle of Wight on two occasions 202 plants, of which 125 were long-styled and 77 short-styled; so that the former were the more numerous. On the other hand, out of 18 plants raised by me from seed, only 4 were long- styled and 14 short-styled. The short-styled plants seemed to my son to produce a greater number of flowers than the long-styled; and he came to this conclusion before a similar statement had been published by Hildebrand with respect to P. officinalis. My son gathered ten branches from ten different plants of both forms, and found the number of flowers of the two forms to be as 100 to 89, 190 being short-styled and 169 long-styled. With P. officinalis the difference, according to Hildebrand, is even greater, namely, as 100 flowers for the short- styled to 77 for the long-styled plants. Table 3.20 shows the results of my experiments.

We see in Table 3.20 that the fertility of the two legitimate unions to that of the two illegitimate together is as 100 to 35, judged by the proportion of flowers which produced fruit; and as 100 to 32, judged by the average number of seeds per fruit. But the small number of fruit yielded by the 18 long-styled flowers in the first line was probably accidental, and if so, the difference in the proportion of legitimately and illegitimately fertilised flowers which yield fruit is really greater than that represented by the ratio of 100 to 35. The 18 long-styled flowers illegitimately fertilised yielded no seeds,--not even a vestige of one. Two long-styled plants which were placed under a net produced 138 flowers, besides those which were artificially fertilised, and none of these set any fruit; nor did some plants of the same form which were protected during the next summer. Two other long-styled plants were left uncovered (all the short-styled plants having been previously covered up), and humble-bees, which had their foreheads white with pollen, incessantly visited the flowers, so that their stigmas must have received an abundance of pollen, yet these flowers did not produce a single fruit. We may therefore conclude that the long-styled plants are absolutely barren with their own-form pollen, though brought from a distinct plant. In this respect they differ greatly from the long-styled English plants of P. officinalis which were found by me to be moderately self-fertile; but they agree in their behaviour with the German plants of P. officinalis experimented on by Hildebrand.

Eighteen short-styled flowers legitimately fertilised yielded, as may be seen in Table 3.20, 15 fruits, each having on an average 2.6 seeds.

The Different Forms of Flowers on Plants of the Same Species Page 47

19th Century English Literature

Charles Darwin

Free Books in the public domain from the Classic Literature Library ©

Charles Darwin

All Pages of This Book