Flowers, therefore, are constructed so as to gain two objects which are, to a certain extent, antagonistic, and this explains many apparent anomalies in their structure. The close proximity of the anthers to the stigma in a multitude of species favours, and often leads, to self-fertilisation; but this end could have been gained far more safely if the flowers had been completely closed, for then the pollen would not have been injured by the rain or devoured by insects, as often happens. Moreover, in this case, a very small quantity of pollen would have been sufficient for fertilisation, instead of millions of grains being produced. But the openness of the flower and the production of a great and apparently wasteful amount of pollen are necessary for cross-fertilisation. These remarks are well illustrated by the plants called cleistogene, which bear on the same stock two kinds of flowers. The flowers of the one kind are minute and completely closed, so that they cannot possibly be crossed; but they are abundantly fertile, although producing an extremely small quantity of pollen. The flowers of the other kind produce much pollen and are open; and these can be, and often are, cross-fertilised. Hermann Muller has also made the remarkable discovery that there are some plants which exist under two forms; that is, produce on distinct stocks two kinds of hermaphrodite flowers. The one form bears small flowers constructed for self-fertilisation; whilst the other bears larger and much more conspicuous flowers plainly constructed for cross-fertilisation by the aid of insects; and without their aid these produce no seed.

The adaptation of flowers for cross-fertilisation is a subject which has interested me for the last thirty-seven years, and I have collected a large mass of observations, but these are now rendered superfluous by the many excellent works which have been lately published. In the year 1857 I wrote a short paper on the fertilisation of the kidney bean (1/1. 'Gardeners' Chronicle' 1857 page 725 and 1858 pages 824 and 844. 'Annals and Magazine of Natural History' 3rd series volume 2 1858 page 462.); and in 1862 my work 'On the Contrivances by which British and Foreign Orchids are Fertilised by Insects' appeared. It seemed to me a better plan to work out one group of plants as carefully as I could, rather than to publish many miscellaneous and imperfect observations. My present work is the complement of that on Orchids, in which it was shown how admirably these plants are constructed so as to permit of, or to favour, or to necessitate cross-fertilisation. The adaptations for cross-fertilisation are perhaps more obvious in the Orchideae than in any other group of plants, but it is an error to speak of them, as some authors have done, as an exceptional case. The lever-like action of the stamens of Salvia (described by Hildebrand, Dr. W. Ogle, and others), by which the anthers are depressed and rubbed on the backs of bees, shows as perfect a structure as can be found in any orchid. Papilionaceous flowers, as described by various authors--for instance, by Mr. T.H. Farrer--offer innumerable curious adaptations for cross-fertilisation. The case of Posoqueria fragrans (one of the Rubiaceae), is as wonderful as that of the most wonderful orchid. The stamens, according to Fritz Muller, are irritable, so that as soon as a moth visits a flower, the anthers explode and cover the insect with pollen; one of the filaments which is broader than the others then moves and closes the flower for about twelve hours, after which time it resumes its original position. (1/2. 'Botanische Zeitung' 1866 page 129.) Thus the stigma cannot be fertilised by pollen from the same flower, but only by that brought by a moth from some other flower. Endless other beautiful contrivances for this same purpose could be specified.

Long before I had attended to the fertilisation of flowers, a remarkable book appeared in 1793 in Germany, 'Das Entdeckte Geheimniss der Natur,' by C.K. Sprengel, in which he clearly proved by innumerable observations, how essential a part insects play in the fertilisation of many plants.

The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom Page 05

19th Century English Literature

Charles Darwin

Free Books in the public domain from the Classic Literature Library ©

Charles Darwin

All Pages of This Book