4, 5, 6. Eschscholtzia californica.

Four sets of measurements are given in Table 7/A. In one of these the crossed plants exceed the self-fertilised in average height, so that this is not one of the exceptions here to be considered. In two other cases the crossed equalled the self-fertilised in height within five per cent; and in the fourth case the self-fertilised exceeded the crossed by above this limit. We have seen in Table 7/C that the whole advantage of a cross by a fresh stock is confined to fertility, and so it was with the intercrossed plants of the same stock compared with the self-fertilised, for the former were in fertility to the latter as 100 to 89. The intercrossed plants thus have at least one important advantage over the self-fertilised. Moreover, the flowers on the parent-plants when fertilised with pollen from another individual of the same stock yield far more seeds than when self-fertilised; the flowers in this latter case being often quite sterile. We may therefore conclude that a cross does some good, though it does not give to the crossed seedlings increased powers of growth.

7. Viscaria oculata.

The average height of the fifteen intercrossed plants to that of the fifteen self-fertilised plants was only as 100 to 97; but the former produced many more capsules than the latter, in the ratio of 100 to 77. Moreover, the flowers on the parent-plants which were crossed and self-fertilised, yielded seeds on one occasion in the proportion of 100 to 38, and on a second occasion in the proportion of 100 to 58. So that there can be no doubt about the beneficial effects of a cross, although the mean height of the crossed plants was only three per cent above that of the self-fertilised plants.

8. Specularia speculum.

Only the four tallest of the crossed and the four tallest of the self-fertilised plants, growing in four pots, were measured; and the former were to the latter in height as 100 to 98. In all four pots a crossed plant flowered before any one of the self-fertilised plants, and this is usually a safe indication of some real superiority in the crossed plants. The flowers on the parent-plants which were crossed with pollen from another plant yielded seeds compared with the self-fertilised flowers in the ratio of 100 to 72. We may therefore draw the same conclusion as in the last case with respect to a cross being decidedly beneficial.

9. Borago officinalis.

Only four crossed and four self-fertilised plants were raised and measured, and the former were to the latter in height as 100 to 102. So small a number of measurements ought never to be trusted; and in the present instance the advantage of the self-fertilised over the crossed plants depended almost entirely on one of the self-fertilised plants having grown to an unusual height. All four crossed plants flowered before their self-fertilised opponents. The cross-fertilised flowers on the parent-plants in comparison with the self-fertilised flowers yielded seeds in the proportion of 100 to 60. So that here again we may draw the same conclusion as in the two last cases.

10. Passiflora gracilis.

Only two crossed and two self-fertilised plants were raised; and the former were to the latter in height as 100 to 104. On the other hand, fruits from the cross-fertilised flowers on the parent-plants contained seeds in number, compared with those from the self-fertilised flowers, in the proportion of 100 to 85.

11. Phaseolus multiflorus.

The five crossed plants were to the five self-fertilised in height as 100 to 96. Although the crossed plants were thus only four per cent taller than the self-fertilised, they flowered in both pots before them. It is therefore probable that they had some real advantage over the self-fertilised plants.

12. Adonis aestivalis.

The four crossed plants were almost exactly equal in height to the four self-fertilised plants, but as so few plants were measured, and as these were all "miserably unhealthy," nothing can be inferred with safety with respect to their relative heights.

Charles Darwin

All Pages of This Book