Considering the extreme tenuity of these tendrils, the action of the light on them is remarkable. The tendrils are long, and, as just stated, very thin, with the tip slightly curved or hooked. The concave side is extremely sensitive to a touch--even a single touch causing it to curl inwards; it subsequently straightened itself, and was again ready to act. A loop of soft thread weighing one fourteenth of a grain (4.625 mg.) caused the extreme tip to bend; another time I tried to hang the same little loop on an inclined tendril, but three times it slid off; yet this extraordinarily slight degree of friction sufficed to make the tip curl. The tendril, though so sensitive, does not move very quickly after a touch, no conspicuous movement being observable until 5 or 10 m. had elapsed. The convex side of the tip is not sensitive to a touch or to a suspended loop of thread. On one occasion I observed a tendril revolving with the convex side of the tip forwards, and in consequence it was not able to clasp a stick, against which it scraped; whereas tendrils revolving with the concave side forward, promptly seize any object in their path.

Passiflora quadrangularis.--This is a very distinct species. The tendrils are thick, long, and stiff; they are sensitive to a touch only on the concave surface towards the extremity. When a stick was placed so that the middle of the tendril came into contact with it, no curvature ensued. In the hothouse a tendril made two revolutions, each in 2 hrs. 22 m.; in a cool room one was completed in 3 hrs., and a second in 4 hrs. The internodes do not revolve; nor do those of the hybrid P. floribunda.

Tacsonia manicata.--Here again the internodes do not revolve. The tendrils are moderately thin and long; one made a narrow ellipse in 5 hrs. 20 m., and the next day a broad ellipse in 5 hrs. 7 m. The extremity being lightly rubbed on the concave surface, became just perceptibly curved in 7 m., distinctly in 10 m., and hooked in 20 m.

We have seen that the tendrils in the last three families, namely, the Vitaceae, Sapindaceae and Passifloraceae, are modified flower- peduncles. This is likewise the case, according to De Candolle (as quoted by Mohl), with the tendrils of Brunnichia, one of the Polygonaceae. In two or three species of Modecca, one of the Papayaceae, the tendrils, as I hear from Prof. Oliver, occasionally bear flowers and fruit; so that they are axial in their nature.

The Spiral Contraction of Tendrils.

This movement, which shortens the tendrils and renders them elastic, commences in half a day, or in a day or two after their extremities have caught some object. There is no such movement in any leaf- climber, with the exception of an occasional trace of it in the petioles of Tropaeolum tricolorum. On the other hand, the tendrils of all tendril-bearing plants, contract spirally after they have caught an object with the following exceptions. Firstly, Corydalis claviculata, but then this plant might be called a leaf-climber. Secondly and thirdly, Bignonia unguis with its close allies, and Cardiospermum; but their tendrils are so short that their contraction could hardly occur, and would be quite superfluous. Fourthly, Smilax aspera offers a more marked exception, as its tendrils are moderately long. The tendrils of Dicentra, whilst the plant is young, are short and after attachment only become slightly flexuous; in older plants they are longer and then they contract spirally. I have seen no other exceptions to the rule that tendrils, after clasping with their extremities a support, undergo spiral contraction. When, however, the tendril of a plant of which the stem is immovably fixed, catches some fixed object, it does not contract, simply because it cannot; this, however, rarely occurs. In the common Pea the lateral branches alone contract, and not the central stem; and with most plants, such as the Vine, Passiflora, Bryony, the basal portion never forms a spire.

I have said that in Corydalis claviculata the end of the leaf or tendril (for this part may be indifferently so called) does not contract into a spire. The branchlets, however, after they have wound round thin twigs, become deeply sinuous or zigzag. Moreover the whole end of the petiole or tendril, if it seizes nothing, bends after a time abruptly downwards and inwards, showing that its outer surface has gone on growing after the inner surface has ceased to grow. That growth is the chief cause of the spiral contraction of tendrils may be safely admitted, as shown by the recent researches of H. de Vries. I will, however, add one little fact in support of this conclusion.

The Movements and Habits of Climbing Plants Page 53

Charles Darwin

Free Books in the public domain from the Classic Literature Library ©

Charles Darwin

All Pages of This Book