In the figure given (Fig. 157), the first dot was made at 8.30 A.M. August 2nd, and the last at 7 P.M. on the 3rd. During 12 h. on the first day the petiole moved thrice downwards and twice upwards. Within the same length of time on the second day, it moved five times downwards and four times upwards. As the ascending and descending lines do not coincide, the petiole manifestly circumnutates; the great evening fall and nocturnal rise being an exaggeration of one of the circumnutations. It should, however, be observed that the petiole fell much lower down in the evenings than could be seen on the vertical glass or is represented in the diagram. After 7 P.M. on the 3rd (when the last dot in Fig. 157 was made) the pot was carried into a bed-room, and the petiole was found at 12.50 A.M. (i.e. after midnight) standing almost upright, and much more highly inclined than it was at 10.40 P.M. When observed again at 4 A.M. it had begun to fall, and continued falling till 6.15 A.M., after which hour it zigzagged and again circumnutated. Similar observations were made on another petiole, with nearly the same result.

Fig. 157 Mimosa pudica: circumnutation and nyctitropic movement of main petiole, traced during 34 h. 30 m.

On two other occasions the movement of the main petiole [page 376] was observed every two or three minutes, the plants being kept at a rather high temperature, viz., on the first occasion at 77o - 81o F., and the filament then described 2 ½ ellipses in 69 m. On the second occasion, when the temperature was 81o - 86o F., it made rather more than 3 ellipses in 67 m. therefore, Fig. 157, though now sufficiently complex, would have been incomparably more so, if dots had been made on the glass every 2 or 3 minutes, instead of every hour or half-hour. Although the main petiole is continually and rapidly describing small ellipses during the day, yet after the great nocturnal rising movement has commenced, if dots are made every 2 or 3 minutes, as was done for an hour between 9.30 and 10.30 P.M. (temp. 84o F.), and the dots are then joined, an almost absolutely straight line is the result.

To show that the movement of the petiole is in all probability due to the varying turgescence of the pulvinus, and not to growth (in accordance with the conclusions of Pfeffer), a very old leaf, with some of its leaflets yellowish and hardly at all sensitive, was selected for observation, and the plant was kept at the highly favourable temp. of 80o F. The petiole fell from 8 A.M. till 10.15 A.M., it then rose a little in a somewhat zigzag line, often remaining stationary, till 5 P.M., when the great evening fall commenced, which was continued till at least 10 P.M. By 7 A.M. on the following morning it had risen to the same level as on the previous morning, and then descended in a zigzag line. But from 10.30 A.M. till 4.15 P.M. it remained almost motionless, all power of movement being now lost. The petiole, therefore, of this very old leaf, which must have long ceased growing, moved periodically; but instead of circumnutating several times during the day, it moved only twice down and twice up in the course of 24 h., with the ascending and descending lines not coincident.

It has already been stated that the pinnae move independently of the main petiole. The petiole of a leaf was fixed to a cork support, close to the point whence the four pinnae diverge, with a short fine filament cemented longitudinally to one of the two terminal pinnae, and a graduated semicircle was placed close beneath it. By looking vertically down, its angular or lateral movements could be measured with accuracy. Between noon and 4.15 P.M. the pinna changed its position to one side by only 7o; but not continuously in the same direction, as it moved four times to one side, and three times to the opposite side, [page 377] in one instance to the extent of 16o. This pinna, therefore circumnutated. Later in the evening the four pinnae approach each other, and the one which was observed moved inwards 59o between noon and 6.45 P.M.

Charles Darwin

All Pages of This Book