Whether or not a radicle, when surrounded by softened earth, is aided in forming a passage for itself by circumnutating, this movement can hardly fail to be of high importance, by guiding the radicle along a line of least resistance, as will be seen in the next chapter when we treat of the sensibility of the tip to contact. If, however, a radicle in its downward growth breaks obliquely into any crevice, or a hole left by a decayed root, or one made by the larva of an insect, and more especially by worms, the circumnutating movement of the tip will materially aid it in following such open passage; and we have observed that roots commonly run down the old burrows of worms.*

When a radicle is placed in a horizontal or inclined position, the terminal growing part, as is well known, bends down towards the centre of the earth; and Sachs* has shown that whilst thus bending, the growth of the lower surface is greatly retarded, whilst that

* See, also, Prof. Hensen's statements ('Zeitschrift für Wissen, Zool.,' B. xxviii. p. 354, 1877) to the same effect. He goes so far as to believe that roots are able to penetrate the ground to a great depth only by means of the burrows made by worms.

* 'Arbeiten des bot. Inst. Würzburg,' vol. i. 1873, p. 461. See also p. 397 for the length of the growing part, and p. 451 on the force of geotropism. [page 73]

of the upper surface continues at the normal rate, or may be even somewhat increased. He has further shown by attaching a thread, running over a pulley, to a horizontal radicle of large size, namely that of the common bean, that it was able to pull up a weight of only one gramme, or 15.4 grains. We may therefore conclude that geotropism does not give a radicle force sufficient to penetrate the ground, but merely tells it (if such an expression may be used) which course to pursue. Before we knew of Sachs' more precise observations we covered a flat surface of damp sand with the thinnest tin-foil which we could procure (.02 to .03 mm., or .00012 to .00079 of an inch in thickness), and placed a radicle close above, in such a position that it grew almost perpendicularly downwards. When the apex came into contact with the polished level surface it turned at right angles and glided over it without leaving any impression; yet the tin-foil was so flexible, that a little stick of soft wood, pointed to the same degree as the end of the radicle and gently loaded with a weight of only a quarter of an ounce (120 grains) plainly indented the tin-foil.

Radicles are able to penetrate the ground by the force due to their longitudinal and transverse growth; the seeds themselves being held down by the weight of the superincumbent soil. In the case of the bean the apex, protected by the root-cap, is sharp, and the growing part, from 8 to 10 mm. in length, is much more rigid, as Sachs has proved, than the part immediately above, which has ceased to increase in length. We endeavoured to ascertain the downward pressure of the growing part, by placing germinating beans between two small metal plates, the upper one of which was loaded with a known weight; and the [page 74] radicle was then allowed to grow into a narrow hole in wood, 2 or 3 tenths of an inch in depth, and closed at the bottom. The wood was so cut that the short space of radicle between the mouth of the hole and the bean could not bend laterally on three sides; but it was impossible to protect the fourth side, close to the bean. Consequently, as long as the radicle continued to increase in length and remained straight, the weighted bean would be lifted up after the tip had reached the bottom of the shallow hole. Beans thus arranged, surrounded by damp sand, lifted up a quarter of a pound in 24 h. after the tip of the radicle had entered the hole. With a greater weight the radicles themselves always became bent on the one unguarded side; but this probably would not have occurred if they had been closely surrounded on all sides by compact earth. There was, however, a possible, but not probable, source of error in these trials, for it was not ascertained whether the beans themselves go on swelling for several days after they have germinated, and after having been treated in the manner in which ours had been; namely, being first left for 24 h.

The Power of Movement in Plants Page 37

19th Century English Literature

Charles Darwin

Free Books in the public domain from the Classic Literature Library ©

Charles Darwin

All Pages of This Book