We can see how this inequality of development and the arching of the petiole could have been gradually acquired, if they were beneficial to the seedlings by favouring their emergence; for with A. candelabrum, spinosus, and latifolius there was a great variability in the inequality between the two first leaves and in the arching of their petioles. In one seedling of A. candelabrum the first leaf was arched and nine times as long as the second, which latter consisted of a mere little, yellowish-white, straight, hairy style. In other seedlings the difference in length between the two leaves was as 3 to 2, or as 4 to 3, or as only .76 to .62 inch. In these latter cases the first and taller leaf was not properly arched. Lastly, in another seedling there was not the least difference in size between the two first leaves, and both of them had their petioles straight; their laminae were enfolded and pressed against each other, forming a lance or wedge, by which means they had broken through the ground. Therefore in different individuals of this same species of Acanthus the first pair of leaves breaks through the ground by two widely different methods; and if [page 80] either had proved decidedly advantageous or disadvantageous, one of them no doubt would soon have prevailed.

Asa Gray has described* the peculiar manner of germination of three widely different plants, in which the hypocotyl is hardly at all developed. These were therefore observed by us in relation to our present subject.

Delphinium nudicaule.--The elongated petioles of the two cotyledons are confluent (as are sometimes their blades at the base), and they break through the ground as an arch. They thus resemble in a most deceptive manner a hypocotyl. At first they are solid, but after a time become tubular; and the basal part beneath the ground is enlarged into a hollow chamber, within which the young leaves are developed without any prominent plumule. Externally root-hairs are formed on the confluent petioles, either a little above, or on a level with, the plumule. The first leaf at an early period of its growth and whilst within the chamber is quite straight, but the petiole soon becomes arched; and the swelling of this part (and probably of the blade) splits open one side of the chamber, and the leaf then emerges. The slit was found in one case to be 3.2 mm. in length, and it is seated on the line of confluence of the two petioles. The leaf when it first escapes from the chamber is buried beneath the ground, and now an upper part of the petiole near the blade becomes arched in the usual manner. The second leaf comes out of the slit either straight or somewhat arched, but afterwards the upper part of the petiole,--certainly in some, and we believe in all cases,--arches itself whilst forcing a passage through the soil.

* 'Botanical Text-Book,' 1879, p. 22. [page 81]

Megarrhiza Californica.--The cotyledons of this Gourd never free themselves from the seed-coats and are hypogean. Their petioles are completely confluent, forming a tube which terminates downwards in a little solid point, consisting of a minute radicle and hypocotyl, with the likewise minute plumule enclosed within the base of the tube. This structure was well exhibited in an abnormal specimen, in which one of the two cotyledons failed to produce a petiole, whilst the other produced one consisting of an open semicylinder ending in a sharp point, formed of the parts just described. As soon as the confluent petioles protrude from the seed they bend down, as they are strongly geotropic, and penetrate the ground. The seed itself retains its original position, either on the surface or buried at some depth, as the case may be. If, however, the point of the confluent petioles meets with some obstacle in the soil, as appears to have occurred with the seedlings described and figured by Asa Gray,* the cotyledons are lifted up above the ground. The petioles are clothed with root-hairs like those on a true radicle, and they likewise resemble radicles in becoming brown when immersed in a solution of permanganate of potassium.

The Power of Movement in Plants Page 40

19th Century English Literature

Charles Darwin

Free Books in the public domain from the Classic Literature Library ©

Charles Darwin

All Pages of This Book