of lime. Worms therefore would be liable to become charged with this earth, unless there were some special means for its excretion; and the calciferous glands are well adapted for this purpose. The worms which live in mould close over the chalk, often have their intestines filled with this substance, and their castings are almost white. Here it is evident that the supply of calcareous matter must be super-abundant. Nevertheless with several worms collected on such a site, the calciferous glands contained as many free calciferous cells, and fully as many and large concretions, as did the glands of worms which lived where there was little or no lime; and this indicates that the lime is an excretion, and not a secretion poured into the alimentary canal for some special purpose.
On the other hand, the following considerations render it highly probable that the carbonate of lime, which is excreted by the glands, aids the digestive process under ordinary circumstances. Leaves during their decay generate an abundance of various kinds of acids, which have been grouped together under the term of humus acids. We shall have to recur to this subject in our fifth chapter, and I need here only say that these acids act strongly on carbonate of lime. The half-decayed leaves which are swallowed in such large quantities by worms would, therefore, after they have been moistened and triturated in the alimentary canal, be apt to produce such acids. And in the case of several worms, the contents of the alimentary canal were found to be plainly acid, as shown by litmus paper. This acidity cannot be attributed to the nature of the digestive fluid, for pancreatic fluid is alkaline; and we have seen that the secretion which is poured out of the mouths of worms for the sake of preparing the leaves for consumption, is likewise alkaline. The acidity can hardly be due to uric acid, as the contents of the upper part of the intestine were often acid. In one case the contents of the gizzard were slightly acid, those of the upper intestines being more plainly acid. In another case the contents of the pharynx were not acid, those of the gizzard doubtfully so, while those of the intestine were distinctly acid at a distance of 5 cm. below the gizzard. Even with the higher herbivorous and omnivorous animals, the contents of the large intestine are acid. "This, however, is not caused by any acid secretion from the mucous membrane; the reaction of the intestinal walls in the larger as in the small intestine is alkaline. It must therefore arise from acid fermentations going on in the contents themselves . . . In Carnivora the contents of the coecum are said to be alkaline, and naturally the amount of fermentation will depend largely on the nature of the food." {26}
With worms not only the contents of the intestines, but their ejected matter or the castings, are generally acid. Thirty castings from different places were tested, and with three or four exceptions were found to be acid; and the exceptions may have been due to such castings not having been recently ejected; for some which were at first acid, were on the following morning, after being dried and again moistened, no longer acid; and this probably resulted from the humus acids being, as is known to be the case, easily decomposed. Five fresh castings from worms which lived in mould close over the chalk, were of a whitish colour and abounded with calcareous matter; and these were not in the least acid. This shows how effectually carbonate of lime neutralises the intestinal acids. When worms were kept in pots filled with fine ferruginous sand, it was manifest that the oxide of iron, with which the grains of silex were coated, had been dissolved and removed from them in the castings.
The digestive fluid of worms resembles in its action, as already stated, the pancreatic secretion of the higher animals; and in these latter, "pancreatic digestion is essentially alkaline; the action will not take place unless some alkali be present; and the activity of an alkaline juice is arrested by acidification, and hindered by neutralization." {27} Therefore it seems highly probable that the innumerable calciferous cells, which are poured from the four posterior glands into the alimentary canal of worms, serve to neutralise more or less completely the acids there generated by the half-decayed leaves. We have seen that these cells are instantly dissolved by a small quantity of acetic acid, and as they do not always suffice to neutralise the contents of even the upper part of the alimentary canal, the lime is perhaps aggregated into concretions in the anterior pair of glands, in order that some may be carried down to the posterior parts of the intestine, where these concretions would be rolled about amongst the acid contents. The concretions found in the intestines and in the castings often have a worn appearance, but whether this is due to some amount of attrition or of chemical corrosion could not be told. Claparede believes that they are formed for the sake of acting as mill-stones, and of thus aiding in the trituration of the food.