Owing to the nature of the secretion or to the shape of the glands, the drops are removed from them with singular facility. It is even somewhat difficult, by the aid of a finely pointed polished needle, slightly damped with water, to place a minute particle of any kind on one of the drops; for on withdrawing the [page 335] needle, the drop is generally withdrawn; whereas with Drosera there is no such difficulty, though the drops are occasionally withdrawn. From this peculiarity, when a small insect alights on a leaf of Drosophyllum, the drops adhere to its wings, feet, or body, and are drawn from the gland; the insect then crawls onward and other drops adhere to it; so that at last, bathed by the viscid secretion, it sinks down and dies, resting on the small sessile glands with which the surface of the leaf is thickly covered. In the case of Drosera, an insect sticking to one or more of the exterior glands is carried by their movement to the centre of the leaf; with Drosophyllum, this is effected by the crawling of the insect, as from its wings being clogged by the secretion it cannot fly away.
There is another difference in function between the glands of these two plants: we know that the glands of Drosera secrete more copiously when properly excited. But when minute particles of carbonate of ammonia, drops of a solution of this salt or of the nitrate of ammonia, saliva, small insects, bits of raw or roast meat, albumen, fibrin or cartilage, as well as inorganic particles, were placed on the glands of Drosophyllum, the amount of secretion never appeared to be in the least increased. As insects do not commonly adhere to the taller glands, but withdraw the secretion, we can see that there would be little use in their having acquired the habit of secreting copiously when stimulated; whereas with Drosera this is of use, and the habit has been acquired. Nevertheless, the glands of Drosophyllum, without being stimulated, continually secrete, so as to replace the loss by evaporation. Thus when a plant was placed under a small bell-glass with its inner surface and support thoroughly wetted, there was no loss by evaporation, and so much [page 336] secretion was accumulated in the course of a day that it ran down the tentacles and covered large spaces of the leaves.
The glands to which the above named nitrogenous substances and liquids were given did not, as just stated, secrete more copiously; on the contrary, they absorbed their own drops of secretion with surprising quickness. Bits of damp fibrin were placed on five glands, and when they were looked at after an interval of 1 hr. 12 m., the fibrin was almost dry, the secretion having been all absorbed. So it was with three cubes of albumen after 1 hr. 19 m., and with four other cubes, though these latter were not looked at until 2 hrs. 15 m. had elapsed. The same result followed in between 1 hr. 15 m. and 1 hr. 30 m. when particles both of cartilage and meat were placed on several glands. Lastly, a minute drop (about 1/20 of a minim) of a solution of one part of nitrate of ammonia to 146 of water was distributed between the secretion surrounding three glands, so that the amount of fluid surrounding each was slightly increased; yet when looked at after 2 hrs., all three were dry. On the other hand, seven particles of glass and three of coal-cinders, of nearly the same size as those of the above named organic substances, were placed on ten glands; some of them being observed for 18 hrs., and others for two or three days; but there was not the least sign of the secretion being absorbed. Hence, in the former cases, the absorption of the secretion must have been due to the presence of some nitrogenous matter, which was either already soluble or was rendered so by the secretion. As the fibrin was pure, and had been well washed in distilled water after being kept in glycerine, and as the cartilage had been soaked in water, I suspect that these substances must [page 337] have been slightly acted on and rendered soluble within the above stated short periods.