Some water in a small vessel was weighed (and this is a more accurate method), and 300 drops removed as before; and on again weighing the water, a drop was found to equal on an average only the 1/89 of a minim. I repeated the operation, but endeavoured this time, by taking the pin's head out of the water obliquely and rather quickly, to remove as large drops as possible; and the result showed that I had succeeded, for each drop on an average equalled 1/19.4 of a minim. I repeated the operation in exactly the same manner, and now the drops averaged 1/23.5 of a minim. Bearing in mind that on these two latter occasions special pains were taken to remove as large drops as possible, we may safely conclude that the drops used in my experiments were at least equal to the 1/20 of a minim, or .0029 ml. One of these drops could be applied to three or even four glands, and if the tentacles became inflected, some of the solution must have been absorbed by all; for drops of pure water, applied in the same manner, never produced any effect. I was able to hold the drop in steady contact with the secretion only for ten to fifteen seconds; and this was not time enough for the diffusion of all the salt in solution, as was evident, from three or four tentacles treated successively with the same drop, often becoming inflected. All the matter in solution was even then probably not exhausted.
Thirdly.--Leaves cut off and immersed in a measured [page 138] quantity of the solution under trial; the same number of leaves being immersed at the same time, in the same quantity of the distilled water which had been used in making the solution. The leaves in the two lots were compared at short intervals of time, up to 24 hrs., and sometimes to 48 hrs. They were immersed by being laid as gently as possible in numbered watch-glasses, and thirty minims (1.775 ml.) of the solution or of water was poured over each.
Some solutions, for instance that of carbonate of ammonia, quickly discolour the glands; and as all on the same leaf were discoloured simultaneously, they must all have absorbed some of the salt within the same short period of time. This was likewise shown by the simultaneous inflection of the several exterior rows of tentacles. If we had no such evidence as this, it might have been supposed that only the glands of the exterior and inflected tentacles had absorbed the salt; or that only those on the disc had absorbed it, and had then transmitted a motor impulse to the exterior tentacles; but in this latter case the exterior tentacles would not have become inflected until some time had elapsed, instead of within half an hour, or even within a few minutes, as usually occurred. All the glands on the same leaf are of nearly the same size, as may best be seen by cutting off a narrow transverse strip, and laying it on its side; hence their absorbing surfaces are nearly equal. The long-headed glands on the extreme margin must be excepted, as they are much longer than the others; but only the upper surface is capable of absorption. Besides the glands, both surfaces of the leaves and the pedicels of the tentacles bear numerous minute papillae, which absorb carbonate of ammonia, an infusion of raw meat, metallic salts, and probably many other substances, but the absorption of matter by these papillae never induces inflection. We must remember that the movement of each separate tentacle depends on its gland being excited, except when a motor impulse is transmitted from the glands of the disc, and then the movement, as just stated, does not take place until some little time has elapsed. I have made these remarks because they show us that when a leaf is immersed in a solution, and the tentacles are inflected, we can judge with some accuracy how much of the salt each gland has absorbed. For instance, if a leaf bearing 212 glands be immersed in a measured quantity of a solution, containing 1/10 of a grain of a salt, and all the exterior tentacles, except twelve, are inflected, we may feel sure that each of the 200 glands can on an average have absorbed at most 1/2000 of a grain of the salt.