With respect to the difficulty of beds of quartz and marble, this has for years startled me, and I have longed (since I have felt its force) to have some opportunity of testing this point, for without you are sure that the beds of quartz dip, as well as strike, parallel to the foliation, the case is only just like true strata of sandstone included in clay-slate and striking parallel to the cleavage of the clay-slate, but of course with different dip (excepting in those rare cases when cleavage and stratification are parallel). Having this difficulty before my eyes, I was much struck with MacCulloch's statement (page 166 of my "S. America") about marble in the metamorphic series not forming true strata.
(FIGURE 6.)
Your expectation of the metamorphic schists sending veins into neighbouring rocks is quite new to me; but I much doubt whether you have any right to assume fluidity from almost any amount of molecular change. I have seen in fine volcanic sandstone clear evidence of all the calcareous matter travelling at least 4 1/2 feet in distance to concretions on either hand (page 113 of "S. America") (541/2. "Some of these concretions (flattened spherical concretions composed of hard calcareous sandstone, containing a few shells, occurring in a bed of sandstone) were 4 feet in diameter, and in a horizontal line 9 feet apart, showing that the calcareous matter must have been drawn to the centres of attraction from a distance of four feet and a half on both sides" ("Geological Observations on S. America," page 113).) I have not examined carefully, from not soon enough seeing all the difficulties; but I believe, from what I have seen, that the folia in the metamorphic schists (I do not here refer to the so-called beds) are not of great length, but thin out, and are succeeded by others; and the notion I have of the molecular movements is shown in the indistinct sketch herewith sent [Figure 6]. The quartz of the strata might here move into the position of the folia without much more movement of molecules than in the formation of concretions. I further suspect in such cases as this, when there is a great original abundance of quartz, that great branching contemporaneous veins of segregation (as sometimes called) of quartz would be formed. I can only thus understand the relation which exists between the distorted foliation (not appearing due to injection) and the presence of such great veins.
I believe some gneiss, as the gneiss-granite of Humboldt, has been as fluid as granite, but I do not believe that this is usually the case, from the frequent alternations of glossy clay and chlorite slates, which we cannot suppose to have been melted.
I am far from wishing to doubt that true sedimentary strata have been converted into metamorphic schists: all I can say is, that in the three or four great regions, where I could ascertain the relations of the metamorphic schists to the neighbouring cleaved rocks, it was impossible (as it appeared to me) to admit that the foliation was due to aqueous deposition. Now that you intend agitating the subject, it will soon be cleared up.
LETTER 542. TO C. LYELL. 27, York Place, Baker Street [1855].
I have received your letter from Down, and I have been studying my S. American book.
I ought to have stated [it] more clearly, but undoubtedly in W. Tierra del Fuego, where clay-slate passes by alternation into a grand district of mica-schist, and in the Chonos Islands and La Plata, where glossy slates occur within the metamorphic schists, the foliation is parallel to the cleavage--i.e. parallel in strike and dip; but here comes, I am sorry and ashamed to say, a great hiatus in my reasoning. I have assumed that the cleavage in these neighbouring or intercalated beds was (as in more distant parts) distinct from stratification. If you choose to say that here the cleavage was or might be parallel to true bedding, I cannot gainsay it, but can only appeal to apparent similarity to the great areas of uniformity of strike and high angle--all certainly unlike, as far as my experience goes, to true stratification.