But who can tell what effect this mile or two of new sedimentary strata would have from mere gravity on the level of the supporting surface? Of course such considerations do not render less true that the expansion of the strata by heat would have some effect on the level of the surface; but they show us how awfully complicated the phenomenon is. All young geologists have a great turn for speculation; I have burned my fingers pretty sharply in that way, and am now perhaps become over-cautious; and feel inclined to cavil at speculation when the direct and immediate effect of a cause in question cannot be shown. How neatly you draw your diagrams; I wish you would turn your attention to real sections of the earth's crust, and then speculate to your heart's content on them; I can have no doubt that speculative men, with a curb on, make far the best observers. I sincerely wish I could have made any remarks of more interest to you, and more directly bearing on your paper; but the subject strikes me as too difficult and complicated. With every good wish that you may go on with your geological studies, speculations, and especially observations...

LETTER 488. TO C. LYELL. Down, March 24th [1853].

I have often puzzled over Dana's case, in itself and in relation to the trains of S. American volcanoes of different heights in action at the same time (page 605, Volume V. "Geological Transactions." (488/1. "On the Connection of certain Volcanic Phenomena in South America, and on the Formation of Mountain Chains and Volcanoes, as the Effect of the same Power by which Continents are Elevated" ("Trans. Geol. Soc." Volume V., page 601, 1840). On page 605 Darwin records instances of the simultaneous activity after an earthquake of several volcanoes in the Cordillera.)) I can throw no light on the subject. I presume you remember that Hopkins (488/2. See "Report on the Geological Theories of Elevation and Earthquakes," by W. Hopkins, "Brit. Assoc. Rep." 1847, page 34.) in some one (I forget which) of his papers discusses such cases, and urgently wishes the height of the fluid lava was known in adjoining volcanoes when in contemporaneous action; he argues vehemently against (as far as I remember) volcanoes in action of different heights being connected with one common source of liquefied rock. If lava was as fluid as water, the case would indeed be hopeless; and I fancy we should be led to look at the deep-seated rock as solid though intensely hot, and becoming fluid as soon as a crack lessened the tension of the super-incumbent strata. But don't you think that viscid lava might be very slow in communicating its pressure equally in all directions? I remember thinking strongly that Dana's case within the one crater of Kilauea proved too much; it really seems monstrous to suppose that the lava within the same crater is not connected at no very great depth.

When one reflects on (and still better sees) the enormous masses of lava apparently shot miles high up, like cannon-balls, the force seems out of all proportion to the mere gravity of the liquefied lava; I should think that a channel a little straightly or more open would determine the line of explosion, like the mouth of a cannon compared to the touch-hole. If a high-pressure boiler was cracked across, no one would think for a moment that the quantity of water and steam expelled at different points depended on the less or greater height of the water within the boiler above these points, but on the size of the crack at these points; and steam and water might be driven out both at top and bottom. May not a volcano be likened to a protruding and cracked portion on a vast natural high-pressure boiler, formed by the surrounding area of country? In fact, I think my simile would be truer if the difference consisted only in the cracked case of the boiler being much thicker in some parts than in others, and therefore having to expel a greater thickness or depth of water in the thicker cracks or parts--a difference of course absolutely as nothing.

Charles Darwin

All Pages of This Book