The tail was about five times as long as the oblong head, and terminated in a very fine filament. It was, as sketched by me under a simple microscope, plainly divided by transverse opaque partitions, which I presume represent the great cells figured by Kovalevsky. At an early stage of development the tail was closely coiled round the head of the larva.), and have the power of swimming freely about. Mr. Kovalevsky (24. 'Memoires de l'Acad. des Sciences de St. Petersbourg,' tom. x. No. 15, 1866.) has lately observed that the larvae of Ascidians are related to the Vertebrata, in their manner of development, in the relative position of the nervous system, and in possessing a structure closely like the chorda dorsalis of vertebrate animals; and in this he has been since confirmed by Prof. Kupffer. M. Kovalevsky writes to me from Naples, that he has now carried these observations yet further, and should his results be well established, the whole will form a discovery of the very greatest value. Thus, if we may rely on embryology, ever the safest guide in classification, it seems that we have at last gained a clue to the source whence the Vertebrata were derived. (25. But I am bound to add that some competent judges dispute this conclusion; for instance, M. Giard, in a series of papers in the 'Archives de Zoologie Experimentale,' for 1872. Nevertheless, this naturalist remarks, p. 281, "L'organisation de la larve ascidienne en dehors de toute hypothese et de toute theorie, nous montre comment la nature peut produire la disposition fondamentale du type vertebre (l'existence d'une corde dorsale) chez un invertebre par la seule condition vitale de l'adaptation, et cette simple possibilite du passage supprime l'abime entre les deux sous-regnes, encore bien qu'en ignore par ou le passage s'est fait en realite.") We should then be justified in believing that at an extremely remote period a group of animals existed, resembling in many respects the larvae of our present Ascidians, which diverged into two great branches--the one retrograding in development and producing the present class of Ascidians, the other rising to the crown and summit of the animal kingdom by giving birth to the Vertebrata.
We have thus far endeavoured rudely to trace the genealogy of the Vertebrata by the aid of their mutual affinities. We will now look to man as he exists; and we shall, I think, be able partially to restore the structure of our early progenitors, during successive periods, but not in due order of time. This, can be effected by means of the rudiments which man still retains, by the characters which occasionally make their appearance in him through reversion, and by the aid of the principles of morphology and embryology. The various facts, to which I shall here allude, have been given in the previous chapters.
The early progenitors of man must have been once covered with hair, both sexes having beards; their ears were probably pointed, and capable of movement; and their bodies were provided with a tail, having the proper muscles. Their limbs and bodies were also acted on by many muscles which now only occasionally reappear, but are normally present in the Quadrumana. At this or some earlier period, the great artery and nerve of the humerus ran through a supra-condyloid foramen. The intestine gave forth a much larger diverticulum or caecum than that now existing. The foot was then prehensile, judging from the condition of the great toe in the foetus; and our progenitors, no doubt, were arboreal in their habits, and frequented some warm, forest-clad land. The males had great canine teeth, which served them as formidable weapons. At a much earlier period the uterus was double; the excreta were voided through a cloaca; and the eye was protected by a third eyelid or nictitating membrane. At a still earlier period the progenitors of man must have been aquatic in their habits; for morphology plainly tells us that our lungs consist of a modified swim-bladder, which once served as a float.