And it is admitted that, as a rule, in man, the temporo-occipital or "external perpendicular" fissure, which is usually so strongly marked a feature of the ape's brain is but faintly marked. But it is also clear, that none of these differences constitutes a sharp demarcation between the man's and the ape's brain. In respect to the external perpendicular fissure of Gratiolet, in the human brain for instance, Professor Turner remarks: (71. 'Convolutions of the Human Cerebrum Topographically Considered,' 1866, p. 12.)
"In some brains it appears simply as an indentation of the margin of the hemisphere, but, in others, it extends for some distance more or less transversely outwards. I saw it in the right hemisphere of a female brain pass more than two inches outwards; and on another specimen, also the right hemisphere, it proceeded for four-tenths of an inch outwards, and then extended downwards, as far as the lower margin of the outer surface of the hemisphere. The imperfect definition of this fissure in the majority of human brains, as compared with its remarkable distinctness in the brain of most Quadrumana, is owing to the presence, in the former, of certain superficial, well marked, secondary convolutions which bridge it over and connect the parietal with the occipital lobe. The closer the first of these bridging gyri lies to the longitudinal fissure, the shorter is the external parieto-occipital fissure" (loc. cit. p. 12).
The obliteration of the external perpendicular fissure of Gratiolet, therefore, is not a constant character of the human brain. On the other hand, its full development is not a constant character of the higher ape's brain. For, in the chimpanzee, the more or less extensive obliteration of the external perpendicular sulcus by "bridging convolutions," on one side or the other, has been noted over and over again by Prof. Rolleston, Mr. Marshall, M. Broca and Professor Turner. At the conclusion of a special paper on this subject the latter writes: (72. Notes more especially on the bridging convolutions in the Brain of the Chimpanzee, 'Proceedings of the Royal Society of Edinburgh,' 1865-6.)
"The three specimens of the brain of a chimpanzee, just described, prove, that the generalisation which Gratiolet has attempted to draw of the complete absence of the first connecting convolution and the concealment of the second, as essentially characteristic features in the brain of this animal, is by no means universally applicable. In only one specimen did the brain, in these particulars, follow the law which Gratiolet has expressed. As regards the presence of the superior bridging convolution, I am inclined to think that it has existed in one hemisphere, at least, in a majority of the brains of this animal which have, up to this time, been figured or described. The superficial position of the second bridging convolution is evidently less frequent, and has as yet, I believe, only been seen in the brain (A) recorded in this communication. The asymmetrical arrangement in the convolutions of the two hemispheres, which previous observers have referred to in their descriptions, is also well illustrated in these specimens" (pp. 8, 9).
Even were the presence of the temporo-occipital, or external perpendicular, sulcus, a mark of distinction between the higher apes and man, the value of such a distinctive character would be rendered very doubtful by the structure of the brain in the Platyrrhine apes. In fact, while the temporo-occipital is one of the most constant of sulci in the Catarrhine, or Old World, apes, it is never very strongly developed in the New World apes; it is absent in the smaller Platyrrhini; rudimentary in Pithecia (73. Flower, 'On the Anatomy of Pithecia Monachus,' 'Proceedings of the Zoological Society,' 1862.); and more or less obliterated by bridging convolutions in Ateles.
A character which is thus variable within the limits of a single group can have no great taxonomic value.
It is further established, that the degree of asymmetry of the convolution of the two sides in the human brain is subject to much individual variation; and that, in those individuals of the Bushman race who have been examined, the gyri and sulci of the two hemispheres are considerably less complicated and more symmetrical than in the European brain, while, in some individuals of the chimpanzee, their complexity and asymmetry become notable.