That P. elatior is not a hybrid is certain, for when the two forms were legitimately united they yielded the large average of 47.1 seeds, and when illegitimately united 35.5 per capsule; whereas, of the four possible unions (Table 2.14) between the two forms of the common oxlip which we know to be a hybrid, one alone yielded any seed; and in this case the average number was only 11.6 per capsule. Moreover I could not detect a single bad pollen-grain in the anthers of the short-styled P. elatior; whilst in two short-styled plants of the common oxlip all the grains were bad, as were a large majority in a third plant. As the common oxlip is a hybrid between the primrose and cowslip, it is not surprising that eight long-styled flowers of the primrose, fertilised by pollen from the long-styled common oxlip, produced eight capsules (Table 1.18), containing, however, only a low average of seeds; whilst the same number of flowers of the primrose, similarly fertilised by the long-styled Bardfield oxlip, produced only a single capsule; this latter plant being an altogether distinct species from the primrose. Plants of P. elatior have been propagated by seed in a garden for twenty-five years, and have kept all this time quite constant, excepting that in some cases the flowers varied a little in size and tint. (2/16. See Mr. H. Doubleday in the 'Gardener's Chronicle' 1867 page 435, also Mr. W. Marshall ibid. page 462.) Nevertheless, according to Mr. H.C. Watson and Dr. Bromfield (2/17. 'Phytologist' volume 1 page 1001 and volume 3 page 695.), plants may be occasionally found in a state of nature, in which most of the characters by which this species can be distinguished from P. veris and vulgaris fail; but such intermediate forms are probably due to hybridisation; for Kerner states, in the paper before referred to, that hybrids sometimes, though rarely, arise in the Alps between P. elatior and veris.
Finally, although we may freely admit that Primula veris, vulgaris, and elatior, as well as all the other species of the genus, are descended from a common primordial form, yet from the facts above given, we must conclude that these three forms are now as fixed in character as are many others which are universally ranked as true species. Consequently they have as good a right to receive distinct specific names as have, for instance, the ass, quagga, and zebra.
Mr. Scott has arrived at some interesting results by crossing other heterostyled species of Primula. (2/18. 'Journal of the Linnean Society Botany' volume 8 1864 page 93 to end.) I have already alluded to his statement, that in four instances (not to mention others) a species when crossed with a distinct one yielded a larger number of seeds than the same species fertilised illegitimately with its own-form pollen, though taken from a distinct plant. It has long been known from the researches of Kolreuter and Gartner, that two species when crossed reciprocally sometimes differ as widely as is possible in their fertility: thus A when crossed with the pollen of B will yield a large number of seeds, whilst B may be crossed repeatedly with pollen of A, and will never yield a single seed. Now Mr. Scott shows in several cases that the same law holds good when two heterostyled species of Primula are intercrossed, or when one is crossed with a homostyled species. But the results are much more complicated than with ordinary plants, as two heterostyled dimorphic species can be intercrossed in eight different ways. I will give one instance from Mr. Scott. The long-styled P. hirsuta fertilised legitimately and illegitimately with pollen from the two forms of P. auricula, and reciprocally the long-styled P. auricula fertilised legitimately and illegitimately with pollen from the two forms of P. hirsuta, did not produce a single seed. Nor did the short-styled P. hirsuta when fertilised legitimately and illegitimately with the pollen of the two forms of P. auricula. On the other hand, the short-styled P. auricula fertilised with pollen from the long-styled P.