The storage of a supply of nectar in a protected place is manifestly connected with the visits of insects. So is the position which the stamens and pistils occupy, either permanently or at the proper period through their own movements; for when mature they invariably stand in the pathway leading to the nectary. The shape of the nectary and of the adjoining parts are likewise related to the particular kinds of insects which habitually visit the flowers; this has been well shown by Hermann Muller by his comparison of lowland species which are chiefly visited by bees, with alpine species belonging to the same genera which are visited by butterflies. (10/5. 'Nature' 1874 page 110, 1875 page 190, 1876 pages 210, 289.) Flowers may also be adapted to certain kinds of insects, by secreting nectar particularly attractive to them, and unattractive to other kinds; of which fact Epipactis latifolia offers the most striking instance known to me, as it is visited exclusively by wasps. Structures also exist, such as the hairs within the corolla of the fox glove (Digitalis), which apparently serve to exclude insects that are not well fitted to bring pollen from one flower to another. (10/6. Belt 'The Naturalist in Nicaragua' 1874 page 132.) I need say nothing here of the endless contrivances, such as the viscid glands attached to the pollen-masses of the Orchideae and Asclepiadae, or the viscid or roughened state of the pollen-grains of many plants, or the irritability of their stamens which move when touched by insects etc.--as all these contrivances evidently favour or ensure cross-fertilisation.
All ordinary flowers are so far open that insects can force an entrance into them, notwithstanding that some, like the Snapdragon (Antirrhinum), various Papilionaceous and Fumariaceous flowers, are in appearance closed. It cannot be maintained that their openness is necessary for fertility, as cleistogene flowers which are permanently closed yield a full complement of seeds. Pollen contains much nitrogen and phosphorus--the two most precious of all the elements for the growth of plants--but in the case of most open flowers, a large quantity of pollen is consumed by pollen-devouring insects, and a large quantity is destroyed during long-continued rain. With many plants this latter evil is guarded against, as far as is possible, by the anthers opening only during dry weather (10/7. Mr. Blackley observed that the ripe anthers of rye did not dehisce whilst kept under a bell-glass in a damp atmosphere, whilst other anthers exposed to the same temperature in the open air dehisced freely. He also found much more pollen adhering to the sticky slides, which were attached to kites and sent high up in the atmosphere, during the first fine and dry days after wet weather, than at other times: 'Experimental Researches on Hay Fever' 1873 page 127.)--by the position and form of some or all of the petals,--by the presence of hairs, etc., and as Kerner has shown in his interesting essay, by the movements of the petals or of the whole flower during cold and wet weather. (10/8. 'Die Schutzmittel des Pollens' 1873.) In order to compensate the loss of pollen in so many ways, the anthers produce a far larger amount than is necessary for the fertilisation of the same flower. I know this from my own experiments on Ipomoea, given in the Introduction; and it is still more plainly shown by the astonishingly small quantity produced by cleistogene flowers, which lose none of their pollen, in comparison with that produced by the open flowers borne by the same plants; and yet this small quantity suffices for the fertilisation of all their numerous seeds. Mr. Hassall took pains in estimating the number of pollen-grains produced by a flower of the Dandelion (Leontodon), and found the number to be 243,600, and in a Paeony 3,654,000 grains. (10/9. 'Annals and Magazine of Natural History' volume 8 1842 page 108.) The editor of the 'Botanical Register' counted the ovules in the flowers of Wistaria sinensis, and carefully estimated the number of pollen-grains, and he found that for each ovule there were 7000 grains.