A few more remarks will complete all that need be said about this internode. It moved during five days; but the more rapid movements, after the performance of the third revolution, lasted during three days and twenty hours. The regular revolutions, from the ninth to thirty-sixth inclusive, were effected at the average rate of 2 hrs. 31 m.; but the weather was cold, and this affected the temperature of the room, especially during the night, and consequently retarded the rate of movement a little. There was only one irregular movement, which consisted in the stem rapidly making, after an unusually slow revolution, only the segment of a circle. After the seventeenth revolution the internode had grown from 1.75 to 6 inches in length, and carried an internode 1.875 inch long, which was just perceptibly moving; and this carried a very minute ultimate internode. After the twenty-first revolution, the penultimate internode was 2.5 inches long, and probably revolved in a period of about three hours. At the twenty-seventh revolution the lower and still moving internode was 8.375, the penultimate 3.5, and the ultimate 2.5 inches in length; and the inclination of the whole shoot was such, that a circle 19 inches in diameter was swept by it. When the movement ceased, the lower internode was 9 inches, and the penultimate 6 inches in length; so that, from the twenty-seventh to thirty-seventh revolutions inclusive, three internodes were at the same time revolving.
The lower internode, when it ceased revolving, became upright and rigid; but as the whole shoot was left to grow unsupported, it became after a time bent into a nearly horizontal position, the uppermost and growing internodes still revolving at the extremity, but of course no longer round the old central point of the supporting stick. From the changed position of the centre of gravity of the extremity, as it revolved, a slight and slow swaying movement was given to the long horizontally projecting shoot; and this movement I at first thought was a spontaneous one. As the shoot grew, it hung down more and more, whilst the growing and revolving extremity turned itself up more and more.
With the Hop we have seen that three internodes were at the same time revolving; and this was the case with most of the plants observed by me. With all, if in full health, two internodes revolved; so that by the time the lower one ceased to revolve, the one above was in full action, with a terminal internode just commencing to move. With Hoya carnosa, on the other hand, a depending shoot, without any developed leaves, 32 inches in length, and consisting of seven internodes (a minute terminal one, an inch in length, being counted), continually, but slowly, swayed from side to side in a semicircular course, with the extreme internodes making complete revolutions. This swaying movement was certainly due to the movement of the lower internodes, which, however, had not force sufficient to swing the whole shoot round the central supporting stick. The case of another Asclepiadaceous plant, viz., Ceropegia Gardnerii, is worth briefly giving. I allowed the top to grow out almost horizontally to the length of 31 inches; this now consisted of three long internodes, terminated by two short ones. The whole revolved in a course opposed to the sun (the reverse of that of the Hop), at rates between 5 hrs. 15 m. and 6 hrs. 45 m. for each revolution. The extreme tip thus made a circle of above 5 feet (or 62 inches) in diameter and 16 feet in circumference, travelling at the rate of 32 or 33 inches per hour. The weather being hot, the plant was allowed to stand on my study- table; and it was an interesting spectacle to watch the long shoot sweeping this grand circle, night and day, in search of some object round which to twine.
If we take hold of a growing sapling, we can of course bend it to all sides in succession, so as to make the tip describe a circle, like that performed by the summit of a spontaneously revolving plant. By this movement the sapling is not in the least twisted round its own axis. I mention this because if a black point be painted on the bark, on the side which is uppermost when the sapling is bent towards the holder's body, as the circle is described, the black point gradually turns round and sinks to the lower side, and comes up again when the circle is completed; and this gives the false appearance of twisting, which, in the case of spontaneously revolving plants, deceived me for a time. The appearance is the more deceitful because the axes of nearly all twining-plants are really twisted; and they are twisted in the same direction with the spontaneous revolving movement. To give an instance, the internode of the Hop of which the history has been recorded, was at first, as could be seen by the ridges on its surface, not in the least twisted; but when, after the 37th revolution, it had grown 9 inches long, and its revolving movement had ceased, it had become twisted three times round its own axis, in the line of the course of the sun; on the other hand, the common Convolvulus, which revolves in an opposite course to the Hop, becomes twisted in an opposite direction.