When a petiole has clasped a twig, it undergoes some remarkable changes, which may be observed with the other species, but in a less strongly marked manner, and will here be described once for all. The clasped petiole in the course of two or three days swells greatly, and ultimately becomes nearly twice as thick as the opposite one which has clasped nothing. When thin transverse slices of the two are placed under the microscope their difference is conspicuous: the side of the petiole which has been in contact with the support, is formed of a layer of colourless cells with their longer axes directed from the centre, and these are very much larger than the corresponding cells in the opposite or unchanged petiole; the central cells, also, are in some degree enlarged, and the whole is much indurated. The exterior surface generally becomes bright red. But a far greater change takes place in the nature of the tissues than that which is visible: the petiole of the unclasped leaf is flexible and can be snapped easily, whereas the clasped one acquires an extraordinary degree of toughness and rigidity, so that considerable force is required to pull it into pieces. With this change, great durability is probably acquired; at least this is the case with the clasped petioles of Clematis vitalba. The meaning of these changes is obvious, namely, that the petioles may firmly and durably support the stem.

Clematis microphylla, var. leptophylla.--The long and thin internodes of this Australian species revolve sometimes in one direction and sometimes in an opposite one, describing long, narrow, irregular ellipses or large circles. Four revolutions were completed within five minutes of the same average rate of 1 hr. 51 m.; so that this species moves more quickly than the others of the genus. The shoots, when placed near a vertical stick, either twine round it, or clasp it with the basal portions of their petioles. The leaves whilst young are nearly of the same shape as those of C. viticella, and act in the same manner like a hook, as will be described under that species. But the leaflets are more divided, and each segment whilst young terminates in a hardish point, which is much curved downwards and inwards; so that the whole leaf readily catches hold of any neighbouring object. The petioles of the young terminal leaflets are acted on by loops of thread weighing 0.125th and even 0.0625th of a grain. The basal portion of the main petiole is much less sensitive, but will clasp a stick against which it presses.

The leaves, whilst young, are continually and spontaneously moving slowly. A bell-glass was placed over a shoot secured to a stick, and the movements of the leaves were traced on it during several days. A very irregular line was generally formed; but one day, in the course of eight hours and three quarters, the figure clearly represented three and a half irregular ellipses, the most perfect one of which was completed in 2 hrs. 35 m. The two opposite leaves moved independently of each other. This movement of the leaves would aid that of the internodes in bringing the petioles into contact with surrounding objects. I discovered this movement too late to be enabled to observe it in the other species; but from analogy I can hardly doubt that the leaves of at least C. viticella, C. flammula, and C. vitalba move spontaneously; and, judging from C Sieboldi, this probably is the case with C. montana and C. calycina. I ascertained that the simple leaves of C. glandulosa exhibited no spontaneous revolving movement.

Clematis viticella, var. venosa.--In this and the two following species the power of spirally twining is completely lost, and this seems due to the lessened flexibility of the internodes and to the interference caused by the large size of the leaves. But the revolving movement, though restricted, is not lost. In our present species a young internode, placed in front of a window, made three narrow ellipses, transversely to the direction of the light, at an average rate of 2 hrs. 40 m. When placed so that the movements were to and from the light, the rate was greatly accelerated in one half of the course, and retarded in the other, as with twining plants. The ellipses were small; the longer diameter, described by the apex of a shoot bearing a pair of not expanded leaves, was only 4.625 inches, and that by the apex of the penultimate internode only 1.125 inch. At the most favourable period of growth each leaf would hardly be carried to and fro by the movement of the internodes more than two or three inches, but, as above stated, it is probable that the leaves themselves move spontaneously. The movement of the whole shoot by the wind and by its rapid growth, would probably be almost equally efficient as these spontaneous movements, in bringing the petioles into contact with surrounding objects.

Charles Darwin

All Pages of This Book