If, on the other hand, it profited the young of an animal to follow habits of life slightly different from those of the parent-form, and consequently to be constructed on a slightly different plan, or if it profited a larva already different from its parent to change still further, then, on the principle of inheritance at corresponding ages, the young or the larvae might be rendered by natural selection more and more different from their parents to any conceivable extent. Differences in the larva might, also, become correlated with successive stages of its development; so that the larva, in the first stage, might come to differ greatly from the larva in the second stage, as is the case with many animals. The adult might also become fitted for sites or habits, in which organs of locomotion or of the senses, etc., would be useless; and in this case the metamorphosis would be retrograde.
>From the remarks just made we can see how by changes of structure in the young, in conformity with changed habits of life, together with inheritance at corresponding ages, animals might come to pass through stages of development, perfectly distinct from the primordial condition of their adult progenitors. Most of our best authorities are now convinced that the various larval and pupal stages of insects have thus been acquired through adaptation, and not through inheritance from some ancient form. The curious case of Sitaris--a beetle which passes through certain unusual stages of development--will illustrate how this might occur. The first larval form is described by M. Fabre, as an active, minute insect, furnished with six legs, two long antennae, and four eyes. These larvae are hatched in the nests of bees; and when the male bees emerge from their burrows, in the spring, which they do before the females, the larvae spring on them, and afterwards crawl on to the females while paired with the males. As soon as the female bee deposits her eggs on the surface of the honey stored in the cells, the larvae of the Sitaris leap on the eggs and devour them. Afterwards they undergo a complete change; their eyes disappear; their legs and antennae become rudimentary, and they feed on honey; so that they now more closely resemble the ordinary larvae of insects; ultimately they undergo a further transformation, and finally emerge as the perfect beetle. Now, if an insect, undergoing transformations like those of the Sitaris, were to become the progenitor of a whole new class of insects, the course of development of the new class would be widely different from that of our existing insects; and the first larval stage certainly would not represent the former condition of any adult and ancient form.
On the other hand it is highly probable that with many animals the embryonic or larval stages show us, more or less completely, the condition of the progenitor of the whole group in its adult state. In the great class of the Crustacea, forms wonderfully distinct from each other, namely, suctorial parasites, cirripedes, entomostraca, and even the malacostraca, appear at first as larvae under the nauplius-form; and as these larvae live and feed in the open sea, and are not adapted for any peculiar habits of life, and from other reasons assigned by Fritz Muller, it is probable that at some very remote period an independent adult animal, resembling the Nauplius, existed, and subsequently produced, along several divergent lines of descent, the above-named great Crustacean groups. So again, it is probable, from what we know of the embryos of mammals, birds, fishes and reptiles, that these animals are the modified descendants of some ancient progenitor, which was furnished in its adult state with branchiae, a swim- bladder, four fin-like limbs, and a long tail, all fitted for an aquatic life.