Instances could be given of similar varieties being produced from the same species under external conditions of life as different as can well be conceived; and, on the other hand, of dissimilar varieties being produced under apparently the same external conditions. Again, innumerable instances are known to every naturalist, of species keeping true, or not varying at all, although living under the most opposite climates. Such considerations as these incline me to lay less weight on the direct action of the surrounding conditions, than on a tendency to vary, due to causes of which we are quite ignorant.

In one sense the conditions of life may be said, not only to cause variability, either directly or indirectly, but likewise to include natural selection, for the conditions determine whether this or that variety shall survive. But when man is the selecting agent, we clearly see that the two elements of change are distinct; variability is in some manner excited, but it is the will of man which accumulates the variations in certain direction; and it is this latter agency which answers to the survival of the fittest under nature.

EFFECTS OF THE INCREASED USE AND DISUSE OF PARTS, AS CONTROLLED BY NATURAL SELECTION.

>From the facts alluded to in the first chapter, I think there can be no doubt that use in our domestic animals has strengthened and enlarged certain parts, and disuse diminished them; and that such modifications are inherited. Under free nature we have no standard of comparison by which to judge of the effects of long-continued use or disuse, for we know not the parent-forms; but many animals possess structures which can be best explained by the effects of disuse. As Professor Owen has remarked, there is no greater anomaly in nature than a bird that cannot fly; yet there are several in this state. The logger-headed duck of South America can only flap along the surface of the water, and has its wings in nearly the same condition as the domestic Aylesbury duck: it is a remarkable fact that the young birds, according to Mr. Cunningham, can fly, while the adults have lost this power. As the larger ground-feeding birds seldom take flight except to escape danger, it is probable that the nearly wingless condition of several birds, now inhabiting or which lately inhabited several oceanic islands, tenanted by no beasts of prey, has been caused by disuse. The ostrich indeed inhabits continents, and is exposed to danger from which it cannot escape by flight, but it can defend itself, by kicking its enemies, as efficiently as many quadrupeds. We may believe that the progenitor of the ostrich genus had habits like those of the bustard, and that, as the size and weight of its body were increased during successive generations, its legs were used more and its wings less, until they became incapable of flight.

Kirby has remarked (and I have observed the same fact) that the anterior tarsi, or feet, of many male dung-feeding beetles are often broken off; he examined seventeen specimens in his own collection, and not one had even a relic left. In the Onites apelles the tarsi are so habitually lost that the insect has been described as not having them. In some other genera they are present, but in a rudimentary condition. In the Ateuchus or sacred beetle of the Egyptians, they are totally deficient. The evidence that accidental mutilations can be inherited is at present not decisive; but the remarkable cases observed by Brown-Sequard in guinea-pigs, of the inherited effects of operations, should make us cautious in denying this tendency. Hence, it will perhaps be safest to look at the entire absence of the anterior tarsi in Ateuchus, and their rudimentary condition in some other genera, not as cases of inherited mutilations, but as due to the effects of long-continued disuse; for as many dung-feeding beetles are generally found with their tarsi lost, this must happen early in life; therefore the tarsi cannot be of much importance or be much used by these insects.

Charles Darwin

All Pages of This Book