Homologous parts, as has been remarked by some authors, tend to cohere; this is often seen in monstrous plants: and nothing is more common than the union of homologous parts in normal structures, as in the union of the petals into a tube. Hard parts seem to affect the form of adjoining soft parts; it is believed by some authors that with birds the diversity in the shape of the pelvis causes the remarkable diversity in the shape of the kidneys. Others believe that the shape of the pelvis in the human mother influences by pressure the shape of the head of the child. In snakes, according to Schlegel, the shape of the body and the manner of swallowing determine the position and form of several of the most important viscera.
The nature of the bond is frequently quite obscure. M. Is. Geoffroy St. Hilaire has forcibly remarked that certain malconformations frequently, and that others rarely, coexist without our being able to assign any reason. What can be more singular than the relation in cats between complete whiteness and blue eyes with deafness, or between the tortoise-shell colour and the female sex; or in pigeons, between their feathered feet and skin betwixt the outer toes, or between the presence of more or less down on the young pigeon when first hatched, with the future colour of its plumage; or, again, the relation between the hair and the teeth in the naked Turkish dog, though here no doubt homology comes into play? With respect to this latter case of correlation, I think it can hardly be accidental that the two orders of mammals which are most abnormal in their dermal covering, viz., Cetacea (whales) and Edentata (armadilloes, scaly ant-eaters, etc.), are likewise on the whole the most abnormal in their teeth, but there are so many exceptions to this rule, as Mr. Mivart has remarked, that it has little value.
I know of no case better adapted to show the importance of the laws of correlation and variation, independently of utility, and therefore of natural selection, than that of the difference between the outer and inner flowers in some Compositous and Umbelliferous plants. Everyone is familiar with the difference between the ray and central florets of, for instance, the daisy, and this difference is often accompanied with the partial or complete abortion of the reproductive organs. But in some of these plants the seeds also differ in shape and sculpture. These differences have sometimes been attributed to the pressure of the involucra on the florets, or to their mutual pressure, and the shape of the seeds in the ray-florets of some Compositae countenances this idea; but with the Umbelliferae it is by no means, as Dr. Hooker informs me, the species with the densest heads which most frequently differ in their inner and outer flowers. It might have been thought that the development of the ray-petals, by drawing nourishment from the reproductive organs causes their abortion; but this can hardly be the sole case, for in some Compositae the seeds of the outer and inner florets differ, without any difference in the corolla. Possibly these several differences may be connected with the different flow of nutriment towards the central and external flowers. We know, at least, that with irregular flowers those nearest to the axis are most subject to peloria, that is to become abnormally symmetrical. I may add, as an instance of this fact, and as a striking case of correlation, that in many pelargoniums the two upper petals in the central flower of the truss often lose their patches of darker colour; and when this occurs, the adherent nectary is quite aborted, the central flower thus becoming peloric or regular. When the colour is absent from only one of the two upper petals, the nectary is not quite aborted but is much shortened.