A thick stolon was much delayed in its passage; at one place it was forced to turn at right angles to its former course; at another place it could not pass through the pins, and the hinder part became bowed; it then curved upwards and passed through an opening between the upper part of some pins which happened to diverge; it then descended and finally emerged through the crowd. This stolon was rendered permanently sinuous to a slight degree, and was thicker where sinuous than elsewhere, apparently from its longitudinal growth having been checked.
Cotyledon umbilicus (Crassulaceae).--A plant growing in a pan [page 220] of damp moss had emitted 2 stolons, 22 and 20 inches in length. One of these was supported, so that a length of 4 ½ inches projected in a straight and horizontal line, and the movement of the apex was traced. The first dot was made at 9.10 A.M.;
Fig. 89. Cotyledon umbilicus: circumnutation of stolon, traced from 11.15 A.M. Aug. 25th to 11 A.M. 27th. Plant illuminated from above. The terminal internode was .25 inch in length, the penultimate 2.25 and the third 3.0 inches in length. Apex of stolon stood at a distance of 5.75 inches from the vertical glass; but it was not possible to ascertain how much the tracing was magnified, as it was not known how great a length of the internode circumnutated.
the terminal portion soon began to bend downwards and continued to do so until noon. Therefore a straight line, very nearly as long as the whole figure here given (Fig. 89), was first traced on the glass; but the upper part of this line has not been copied in the diagram. The curvature occurred in the middle [page 221] of the penultimate internode; and its chief seat was at the distance of 1 1/4 inch from the apex; it appeared due to the weight of the terminal portion, acting on the more flexible part of the internode, and not to geotropism. The apex after thus sinking down from 9.10 A.M. to noon, moved a little to the left; it then rose up and circumnutated in a nearly vertical plane until 10.35 P.M. On the following day (26th) it was ob-
Fig. 90. Cotyledon umbilicus: circumnutation and downward movement of another stolon, traced on vertical glass, from 9.11 A.M. Aug. 25th to 11 A.M. 27th. Apex close to glass, so that figure but little magnified, and here reduced to two-thirds of original size.
served from 6.40 A.M. to 5.20 P.M., and within this time it moved twice up and twice down. On the morning of the 27th the apex stood as high as it did at 11.30 A.M. on the 25th. Nor did it sink down during the 28th, but continued to circumnutate about the same place.
Another stolon, which resembled the last in almost every [page 222] respect, was observed during the same two days, but only two inches of the terminal portion was allowed to project freely and horizontally. On the 25th it continued from 9.10 A.M. to 1.30 P.M. to bend straight downwards, apparently owing to its weight (Fig. 90); but after this hour until 10.35 P.M. it zigzagged. This fact deserves notice, for we here probably see the combined effects of the bending down from weight and of circumnutation. The stolon, however, did not circumnutate when it first began to bend down, as may be observed in the present diagram, and as was still more evident in the last case, when a longer portion of the stolon was left unsupported. On the following day (26th) the stolon moved twice up and twice down, but still continued to fall; in the evening and during the night it travelled from some unknown cause in an oblique direction.]
We see from these three cases that stolons or runners circumnutate in a very complex manner. The lines generally extend in a vertical plane, and this may probably be attributed to the effect of the weight of the unsupported end of the stolon; but there is always some, and occasionally a considerable, amount of lateral movement. The circumnutation is so great in amplitude that it may almost be compared with that of climbing plants. That the stolons are thus aided in passing over obstacles and in winding between the stems of the surrounding plants, the observations above given render almost certain.