Why a touch, slight pressure or any other irritant, such as electricity, heat, or the absorption of animal matter, should modify the turgescence of the affected cells in such a manner as to cause movement, we do not know. But a touch acts in this manner so often, and on such widely distinct plants, that the tendency seems to be a very general one; and if beneficial, it might be increased to any extent. In other cases, a touch produces a very different effect, as with Nitella, in which the protoplasm may be seen to recede from the walls of the cell; in Lactuca, in which a milky fluid exudes; and in the tendrils of certain Vitaceae, Cucurbitaceae, and Bignoniaceae, in which slight pressure causes a cellular outgrowth.

Finally it is impossible not to be struck with the resemblance between the foregoing movements of plants and many of the actions performed unconsciously by the lower animals.** With plants an

* For the evidence on this head, see the 'Movements and Habits of Climbing Plants,' 1875, pp. 173, 174.

** Sachs remarks to nearly the same effect: "Dass sich die le- [[page 572]] bende Pflanzensubstanz derart innerlich differenzirt, dass einzelne Theile mit specifischen Energien ausgerüstet sind, ähnlich, wie die verschiedenen Sinnesnerven des Thiere" ('Arbeiten des Bot. Inst. in Würzburg,' Bd. ii. 1879, p. 282). [page 572]

astonishingly small stimulus suffices; and even with allied plants one may be highly sensitive to the slightest continued pressure, and another highly sensitive to a slight momentary touch. The habit of moving at certain periods is inherited both by plants and animals; and several other points of similitude have been specified. But the most striking resemblance is the localisation of their sensitiveness, and the transmission of an influence from the excited part to another which consequently moves. Yet plants do not of course possess nerves or a central nervous system; and we may infer that with animals such structures serve only for the more perfect transmission of impressions, and for the more complete intercommunication of the several parts.

We believe that there is no structure in plants more wonderful, as far as its functions are concerned, than the tip of the radicle. If the tip be lightly pressed or burnt or cut, it transmits an influence to the upper adjoining part, causing it to bend away from the affected side; and, what is more surprising, the tip can distinguish between a slightly harder and softer object, by which it is simultaneously pressed on opposite sides. If, however, the radicle is pressed by a similar object a little above the tip, the pressed part does not transmit any influence to the more distant parts, but bends abruptly towards the object. If the tip perceives the air to be moister on one side than on the other, it likewise transmits an influence to the upper adjoining part, which bends towards the source of moisture. When the tip is excited by light (though [page 573] in the case of radicles this was ascertained in only a single instance) the adjoining part bends from the light; but when excited by gravitation the same part bends towards the centre of gravity. In almost every case we can clearly perceive the final purpose or advantage of the several movements. Two, or perhaps more, of the exciting causes often act simultaneously on the tip, and one conquers the other, no doubt in accordance with its importance for the life of the plant. The course pursued by the radicle in penetrating the ground must be determined by the tip; hence it has acquired such diverse kinds of sensitiveness. It is hardly an exaggeration to say that the tip of the radicle thus endowed, and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.

Charles Darwin

All Pages of This Book