maxima they sometimes resume their ordinary structure. Again, in C. maxima, the carpels (page 19) which form the turban project even as much as two-thirds of their length out of the receptacle, and this latter part is thus reduced to a sort of platform; but this remarkable structure occurs only in certain varieties, and graduates into the common form in which the carpels are almost entirely enveloped within the receptacle. In C. moschata the ovarium (page 50) varies greatly in shape, being oval, nearly spherical, or cylindrical, more or less swollen in the upper part, or constricted round the middle, and either straight or curved. When the ovarium is short and oval the interior structure does not differ from that of C. maxima and pepo, but when it is elongated the carpels occupy only the terminal and swollen portion. I may add that in one variety of the cucumber (Cucumis sativus) the fruit regularly contains five carpels instead of three. (10/140. Naudin 'Annal. des Sc. Nat.' 4th series Bot. tome 11 1859 page 28.) I presume that it will not be disputed that we here have instances of great variability in organs of the highest physiological importance, and with most plants of the highest classificatory importance.

[Sageret (10/141. 'Memoire sur les Cucurbitacees' 1826 pages 6, 24.) and Naudin found that the cucumber (C. sativus) could not be crossed with any other species of the genus; therefore no doubt it is specifically distinct from the melon. This will appear to most persons a superfluous statement; yet we hear from Naudin (10/142. 'Flore des Serres' October 1861 quoted in 'Gardener's Chronicle' 1861 page 1135. I have often consulted and taken some facts from M. Naudin's Memoir on Cucumis in 'Annal. des Sc. Nat.' 4th series Bot. tome 11 1859 page 5.) that there is a race of melons, in which the fruit is so like that of the cucumber, "both externally and internally, that it is hardly possible to distinguish the one from the other except by the leaves." The varieties of the melon seem to be endless, for Naudin after six years' study had not come to the end of them: he divides them into ten sections, including numerous sub-varieties which all intercross with perfect ease. (10/143. See also Sageret 'Memoire' page 7.) Of the forms considered by Naudin to be varieties, botanists have made thirty distinct species! "and they had not the slightest acquaintance with the multitude of new forms which have appeared since their time." Nor is the creation of so many species at all surprising when we consider how strictly their characters are transmitted by seed, and how wonderfully they differ in appearance: "Mira est quidem foliorum et habitus diversitas, sed multo magis fructuum," says Naudin. The fruit is the valuable part, and this, in accordance with the common rule, is the most modified part. Some melons are only as large as small plums, others weigh as much as sixty-six pounds. One variety has a scarlet fruit! Another is not more than an inch in diameter, but sometimes more than a yard in length, "twisting about in all directions like a serpent." It is a singular fact that in this latter variety many parts of the plant, namely, the stems, the footstalks of the female flowers, the middle lobe of the leaves, and especially the ovarium, as well as the mature fruit, all show a strong tendency to become elongated. Several varieties of the melon are interesting from assuming the characteristic features of distinct species and even of distinct though allied genera: thus the serpent-melon has some resemblance to the fruit of Trichosanthes anguina; we have seen that other varieties closely resemble cucumbers; some Egyptian varieties have their seeds attached to a portion of the pulp, and this is characteristic of certain wild forms. Lastly, a variety of melon from Algiers is remarkable from announcing its maturity by "a spontaneous and almost sudden dislocation," when deep cracks suddenly appear, and the fruit falls to pieces; and this occurs with the wild C. momordica. Finally, M.

Charles Darwin

All Pages of This Book