Lecoq 'De la Fecondation' 1862 page 233.) In the above cases we have a natural tendency in certain parts to be rudimentary, and this under culture spreads either to, or from, the axis of the plant. It deserves notice, as showing how the same laws govern the changes which natural species and artificial varieties undergo, that in the species of Carthamus, one of the Compositae, a tendency to the abortion of the pappus may be traced extending from the circumference to the centre of the disc as in the so-called doubling of the flowers in the members of the same family. Thus, according to A. de Jussieu (24/88. 'Annales du Museum' tome 6 page 319.), the abortion is only partial in Carthamus creticus, but more extended in C. lanatus; for in this species only two or three of the central seeds are furnished with a pappus, the surrounding seeds being either quite naked or furnished with a few hairs; and lastly in C. tinctorius, even the central seeds are destitute of pappus, and the abortion is complete.

With animals and plants under domestication, when an organ disappears, leaving only a rudiment, the loss has generally been sudden, as with hornless and tailless breeds; and such cases may be ranked as inherited monstrosities. But in some few cases the loss has been gradual, and has been effected partly by selection, as with the rudimentary combs and wattles of certain fowls. We have also seen that the wings of some domesticated birds have been slightly reduced by disuse, and the great reduction of the wings in certain silk-moths, with mere rudiments left, has probably been aided by disuse.]

With species in a state of nature, rudimentary organs are extremely common. Such organs are generally variable, as several naturalists have observed; for, being useless, they are not regulated by natural selection, and they are more or less liable to reversion. The same rule certainly holds good with parts which have become rudimentary under domestication. We do not know through what steps under nature rudimentary organs have passed in being reduced to their present condition; but we so incessantly see in species of the same group the finest gradations between an organ in a rudimentary and perfect state, that we are led to believe that the passage must have been extremely gradual. It may be doubted whether a change of structure so abrupt as the sudden loss of an organ would ever be of service to a species in a state of nature; for the conditions to which all organisms are closely adapted usually change very slowly. Even if an organ did suddenly disappear in some one individual by an arrest of development, intercrossing with the other individuals of the same species would tend to cause its partial reappearance; so that its final reduction could only be effected by some other means. The most probable view is, that a part which is now rudimentary, was formerly, owing to changed habits of life, used less and less, being at the same time reduced in size by disuse, until at last it became quite useless and superfluous. But as most parts or organs are not brought into action during an early period of life, disuse or decreased action will not lead to their reduction until the organism arrives at a somewhat advanced age; and from the principle of inheritance at corresponding ages the reduction will be transmitted to the offspring at the same advanced stage of growth. The part or organ will thus retain its full size in the embryo, as we know to be the case with most rudiments. As soon as a part becomes useless, another principle, that of economy of growth, will come into play, as it would be an advantage to an organism exposed to severe competition to save the development of any useless part; and individuals having the part less developed will have a slight advantage over others. But, as Mr. Mivart has justly remarked, as soon as a part is much reduced, the saving from its further reduction will be utterly insignificant; so that this cannot be effected by natural selection. This manifestly holds good if the part be formed of mere cellular tissue, entailing little expenditure of nutriment.

Charles Darwin

All Pages of This Book