'Archives de Zoolog. Exper.' January 1874 page 78.) quite decisively against the law of soi pour soi, but concludes by saying, "On se rend parfaitement compte de la formation des monstres, si l'on admet que les embryons qui se soudent appartiennent a un meme oeuf; qu'ils s'unissent en meme temps qu'ils se forment, et que la soudure ne se produit que pendant la premiere periode de la vie embryonnaire, celle ou les organes ne sont encore constitues que par des blastemes homogenes."

By whatever means the abnormal fusion of homologous parts is effected, such cases throw light on the frequent presence of organs which are double during an embryonic period (and throughout life in other and lower members of the same class) but which afterwards unite by a normal process into a single medial organ. In the vegetable kingdom Moquin-Tandon (26/5. 'Teratologie Veg.' 1841 livre 3.) gives a long list of cases, showing how frequently homologous parts, such as leaves, petals, stamens, and pistils, flowers, and aggregates of homologous parts, such as buds, as well as fruit, become blended, both normally and abnormally, with perfect symmetry into one another.

THE VARIABILITY OF MULTIPLE AND HOMOLOGOUS PARTS.

Isidore Geoffroy (26/6. 'Hist. des Anomalies' tome 3 pages 4, 5, 6.) insists that, when any part or organ is repeated many times in the same animal, it is particularly liable to vary both in number and structure. With respect to number, the proposition may, I think, be considered as fully established; but the evidence is chiefly derived from organic beings living under their natural conditions, with which we are not here concerned. Whenever such parts as the vertebrae or teeth, the rays in the fins of fishes, or the feathers in the tails of birds, or petals, stamens, pistils, or seeds, are very numerous, the number is generally variable. With respect to the structure of multiple parts, the evidence of variability is not so decisive; but the fact, as far as it may be trusted, probably depends on multiple parts being of less physiological importance than single parts; consequently their structure has been less rigorously guarded by natural selection.

COMPENSATION OF GROWTH, OR BALANCEMENT.

This law, as applied to natural species, was propounded by Goethe and Geoffroy Saint-Hilaire at nearly the same time. It implies that, when much organised matter is used in building up some one part, other parts are starved and become reduced. Several authors, especially botanists, believe in this law; others reject it. As far as I can judge, it occasionally holds good; but its importance has probably been exaggerated. It is scarcely possible to distinguish between the supposed effects of such compensation, and the effects of long-continued selection which may lead to the augmentation of one part, and simultaneously to the diminution of another. Anyhow, there can be no doubt that an organ may be greatly increased without any corresponding diminution of an adjoining part. To recur to our former illustration of the Irish elk, it may be asked what part has suffered in consequence of the immense development of the horns?

It has already been observed that the struggle for existence does not bear hard on our domesticated productions, and consequently the principle of economy of growth will seldom come into play, so that we ought not to expect to find with them frequent evidence of compensation. We have, however, some such cases. Moquin-Tandon describes a monstrous bean (26/7. 'Teratologie Veg.' page 156. See also my book on 'The Movements and Habits of Climbing Plants' 2nd edition 1875 page 202.), in which the stipules were enormously developed, and the leaflets apparently in consequence completely aborted; this case is interesting, as it represents the natural condition of Lathyrus aphaca, with its stipules of great size, and its leaves reduced to mere threads, which act as tendrils. De Candolle (26/8. 'Memoires du Museum' etc. tome 8 page 178.) has remarked that the varieties of Raphanus sativus which have small roots yield numerous seed containing much oil, whilst those with large roots are not productive in oil; and so it is with Brassica asperifolia.

Charles Darwin

All Pages of This Book