A distinct conception of sex as applied to plants, had not long emerged from the mists of profitless discussion and feeble experiment, at the time when my father began botany by attending Henslow's lectures at Cambridge.
When the belief in the sexuality of plants had become established as an incontrovertible piece of knowledge, a weight of misconception remained, weighing down any rational view of the subject. Camerarius (Sachs, 'Geschichte,' page 419.) believed (naturally enough in his day) that hermaphrodite flowers are necessarily self-fertilised. He had the wit to be astonished at this, a degree of intelligence which, as Sachs points out, the majority of his successors did not attain to.
The following extracts from a note-book show that this point occurred to my father as early as 1837:--
"Do not plants which have male and female organs together [i.e. in the same flower] yet receive influence from other plants? Does not Lyell give some argument about varieties being difficult to keep [true] on account of pollen from other plants? Because this may be applied to show all plants do receive intermixture."
Sprengel (Christian Conrad Sprengel, 1750-1816.), indeed, understood that the hermaphrodite structure of flowers by no means necessarily leads to self-fertilisation. But although he discovered that in many cases pollen is of necessity carried to the stigma of another FLOWER, he did not understand that in the advantage gained by the intercrossing of distinct PLANTS lies the key to the whole question. Hermann Muller has well remarked that this "omission was for several generations fatal to Sprengel's work...For both at the time and subsequently, botanists felt above all the weakness of his theory, and they set aside, along with his defective ideas, his rich store of patient and acute observations and his comprehensive and accurate interpretations." It remained for my father to convince the world that the meaning hidden in the structure of flowers was to be found by seeking light in the same direction in which Sprengel, seventy years before, had laboured. Robert Brown was the connecting link between them, for it was at his recommendation that my father in 1841 read Sprengel's now celebrated 'Secret of Nature Displayed.' ('Das entdeckte Geheimniss der Natur im Baue und in der Befruchtung der Blumen.' Berlin, 1793.) The book impressed him as being "full of truth," although "with some little nonsense." It not only encouraged him in kindred speculation, but guided him in his work, for in 1844 he speaks of verifying Sprengel's observations. It may be doubted whether Robert Brown ever planted a more beautiful seed than in putting such a book into such hands.
A passage in the 'Autobiography' (volume i.) shows how it was that my father was attracted to the subject of fertilisation: "During the summer of 1839, and I believe during the previous summer, I was led to attend to the cross-fertilisation of flowers by the aid of insects, from having come to the conclusion in my speculations on the origin of species, that crossing played an important part in keeping specific forms constant."
The original connection between the study of flowers and the problem of evolution is curious, and could hardly have been predicted. Moreover, it was not a permanent bond. As soon as the idea arose that the offspring of cross-fertilisation is, in the struggle for life, likely to conquer the seedlings of self-fertilised parentage, a far more vigorous belief in the potency of natural selection in moulding the structure of flowers is attained. A central idea is gained towards which experiment and observation may be directed.
Dr. Gray has well remarked with regard to this central idea ('Nature,' June 4, 1874):--"The aphorism, 'Nature abhors a vacuum,' is a characteristic specimen of the science of the middle ages. The aphorism, Nature abhors close fertilisation,' and the demonstration of the principle, belong to our age and to Mr. Darwin. To have originated this, and also the principle of Natural Selection...and to have applied these principles to the system of nature, in such a manner as to make, within a dozen years, a deeper impression upon natural history than has been made since Linnaeus, is ample title for one man's fame."
The flowers of the Papilionaceae attracted his attention early, and were the subject of his first paper on fertilisation.